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Microstructural instability commonly arises from a progressive decrease in interfacial 
area and thus in free energy. Particle coarsening processes provide an example of this 
but most of the work on microstructural instability has concentrated attention on 
particles within grains and at grain boundary surfaces. Despite the fact that the geometri- 
cal principles are well documented and understood, little consideration has been given 
to the coarsening processes of particles at grain edges and grain corners beyond the 
general recognition that such sites present favourable situations for preferential growth. 
It is noted here that certain specific features arise for particular values of the ratio 
between the interfacial and grain-boundary energies. Within a specific range of values of 
this ratio which are not very common in practice, there is a possibility of preferential 
growth of particles at grain corners and their stabilization independently of their initial 
size. More particularly and over a wider range of this ratio, a gross change in particle 
morphology, effectively as a spreading as a second phase along grain edges, can occur with 
the special characteristics that there is an advantage to such spreading with a small cross- 
section perpendicular to the grain edge at the expense of some reduction in the cross- 
section of a thicker section of material spread along a neighbouring grain edge. From 
these considerations, it is suggested that a particularly stable form of microstructure may 
be developed which could conceivably form a good basis for fibre reinforcement. 

1. I n t r o d u c t i o n  
Over many years, much attention has been given 
to the geometrical aspects of the shapes of grains 
and phases present in solid systems. Such studies 
have been thoroughly reviewed [1] and, on a 
macroscopic scale, there now exists a complete 
picture of all the requirements for space fiUing and 
of the physical conditions that are required to 
establish equilibrium shapes or equilibrium con- 
ditions at junctions by minimizing surface free- 
energy [2, 3]. 

More recently, the need to obtain reasonably 
stable structures, maintaining properties over a 
considerable period of time at elevated tempera- 
tures, has led to strong interest in the conditions 
for microstructural stability [4]. At an atomic 
level, much remains to be leamed. At a macro- 
scopic level, although the principles are firmly 
established, there does not appear to be a wide 
general appreciation of all their consequences, 

0022-2461/82/072127-06503.22/0 

some of which may possibly be helpful for use in 
the practical aspects of materials design. 

2. Some principles of microstructural 
stability 

In many solid systems, phase transformations are 
incomplete and in such cases free energy reduction 
can arise progressively by continued phase trans- 
formation, where the bulk energy is provided by 
changes in the amounts of the respective phases 
involved. This aspect will not be dealt with in this 
work; instead, consideration will be restricted to 
two additional features, firstly, the driving force 
for change related to the lack of attainment of 
equilibrium where interfaces meet and, secondly, 
the driving force for instability that arises through 
surface curvature. These two features are inter- 
related in so far as they influence microstructural 
stability. 

Where equilibrium is established at junctions 
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between a grain boundary of energy, 7g, per unit 
area and two interfacial boundaries, each of 
energy 7i per unit area between two phases, the 
well known relationship 

3'g = 27i cos (0/2), (1) 

applies, where 0 is the dehedral angle [1 ]. It is a 
further requirement of equilibrium conditions for 
isotropic phases with some solubility in the 
matrix phase that the surface curvature of a 
discrete phase or particle is everywhere constant, 
except at these junctions. This follows from the 
equilibrium relationship between curvature and 
solubility [2] which can be given as 

St~S= = exp (27igm/RTr), (2) 

where Sr is the solubility of a particle with surface 
of radius r, S| is the solubility at infinite radius at 
temperature T, V m is the molar volume of the 
material of the particle and R is the gas constant. 

These principles are illustrated in Fig. 1 where 
the three particles shown, within a grain, at a grain 
boundary and at a grain edge, all have the same 
radius of curvature. This immediately implies that 
all three particles have the same solubility and so 
none of these particles will compete with another 
for growth at the expense of the others. Con- 
versely, if similar volumes of material are placed 
at each of these three positions, as shown in Fig. 2, 
then it is apparent that the radius of curvature of 
the particle at the grain edge is greatest and has 
the lowest solubility and that of the particle 
within the grain is smallest and has the highest 
solubility. This arises simply because the greatest 
area of grain boundary has been removed for the 
particle at the grain edge and for the particle with- 
in the grain there is no compensating reduction in 
grain-boundary area. The argument can be further 
extended to show that, for similar reasons and for 
the same volume of material, the particle radius of 
curvature is still greater for a particle situated at 
a grain comer. 

In practical systems it is well known that the 
equilibrium conditions at grain edges and comers 
are not generally established overall since, in a 
three dimensional case, space-filling polyhedra 
with plane surfaces do not everywhere have the 
angles between the grain faces of 120 ~ and angles 
between the grain edges of 109.5 ~ . The variability 
found in real situations and often the influence of 
anisotropy leading to the need to introduce torque 
terms [5] have tended to limit the attention given 
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to phases along grain edges and at grain corners, 
although some phenomena, such as liquid metal 
embrittlement [6], have been considered in this 
respect. More recently, however, further consider- 
ations have been reported, including the proposal 
[7] of a space-filling polyhedron having faces 
with distributions of four-, five- and six-sided 
faces similar to the observed morphology of 
separated crystallites and derived from the Kelvin 
a-tetrakaidecahedron [8]. Some interest has also 
been focussed on the geometrical aspects of phases 
at grain boundaries in relation to dihedral angle 
[9]. These aspects have come into prominence in 
practical situations such as the removal of porosity 
in uranium dioxide during sintering and its re- 
occurrence and development to permit the release 
of gases [10-12].  

Such considerations prompt the attention to 
the relative stabilities of condensed phases at grain 
comers, edges and faces that could have a bearing 
on microstructural development. 

3. Particle coarsening processes and the 
importance of particle location 

In the many cases where particle coarsening 
processes have been extensively analysed [13], the 
rates of growth of "large" particles have been 
calculated with the simultaneous decrease of 
"smaller" ones. When specific particle locations 
are taken into account, a more precise definition 
of the terms "large" and "small" becomes 
necessary since it is clear from Figs 1 and 2 that a 
particle on a grain boundary, which is somewhat 
smaller in volume than one in the matrix, may 
grow preferentially. Moreover, grain edges and 
especially grain comers are particularly well 
favoured sites for growth and can eventually 
deplete the particle concentration in other regions. 
The terms "large" and "small" should invariably 
refer to the particle radii of surface curvature for 
then, without any more features of the geometry 
becoming involved, it is evident that a particle on 
a grain surface, edge or corner can only grow 
providing it is of larger radius than its neighbours. 

Some further consequences of these features 
seem rarely to have been appreciated for all ratios 
of ')'g/Ti, although they are implicit in detailed 
analyses of geometrical features of two-phase 
aggregates [14]. For a particle at a grain corner 
where the grain edges each meet at 109.5 ~ and 
when 'Yg/Ti = 2X/~, so that 0 = 70.5 ~ the particle 
takes the form of a regular tetrahedron. This may 



{a) Figure I Three particles, all having the same 
radius of curvature, are schematically illus- 
trated which are situated (a) within the grain 
(b) on a grain boundary and (c) at a grain 
edge. The same dihedral angle, 0, greater 
than 60 ~ , is subtended by the particle- 
matrix interfaces at all intersections with 
the grain boundaries. Despite differences in 
their volume, all three particles have the 
same solubility. 

be viewed as a part icle o f  zero  surface curvature  

or  rather  as one o f  infinite radius. The significance 

o f  this is tha t ,  regardless o f  its actual dimensions,  

the part icle will always grow compet i t ive ly  at the 

expense o f  any o ther  part icle,  no  ma t t e r  h o w  

large, which  has a convex  bu t  finite radius o f  

curvature.  This m a y  be i l lustrated in Fig. 3, where 

the t e t rahedron  o f  edge length,  x ,  has a to ta l  

area o f  its four  faces o f  4 (x /3x2 /4 )  bu t  six 

triangular areas are removed  wi th  their  to ta l  area 

o f  6 (x2 /4x/2) .  The  ne t  change in free energy,  E 

(due to  a change in these areas th rough  growth)  

wi th  respect  to  a small change in edge length  x,  

is thus  

Figure 2 Particles are again situated (a) within the grain, 
(b) on a grain boundary and (c) at a grain edge. In this 
instance all the particles have the same volume and the 
dihedral angle at intersections with grain boundaries has 
the same value, 0. In this instance it is apparent that the 
radius of curvature of the particle within the grain is the 
smallest. Where the particles have some solubility, it 
follows that the particle at (e) at the grain edge will grow 
at the expense of the other particles. This situation arises 
because the greatest area of grain boundary has been 
removed in case (c) whereas in case (b) there is less and in 
(a) there is no compensating reduction in the total grain- 
boundary area. 

dx - dx  i - -  x 2, (3)  

which  equals zero when  3'g = 3'i2x/r~- This implies 
that  an increase in part icle surface free energy on 

growth  is exac t ly  compensa ted  for  by  loss o f  grain- 

boundary  free energy because o f  the area o f  grain 

boundary  removed.  
An  i n t e r e s t i n g  s i tuat ion arises i f  the dihedral  

angle, 0, is less than 70.5 ~ bu t  is rather greater 

0 ~ 

._=-_-_-:-__ _ _ 

Figure 3 For a particle a t a grain comer where grain edges 
each meet at 109.5 ~ and where the dihedral angle between 
faces of the particle is 70.5 ~ , then the particle takes the 
form of a regular tetrahedron. This implies that the par- 
title has plain surfaces. It follows that, regardless of its 
actual dimensions, this particle at the grain comer will 
always grow competitively at the expense of any other 
particle, no matter how large, which has a convex but 
finite radius of curvature. A small change in size of the 
grain comer particle does not lead to any total increase 
or decrease of interfaeial energy. The interfaeial energy 
of the particle made up of the four faces of the type ABC, 
leads to 4(x/~x2/4)~i but the particle in this position 
actually removes six triangular areas of grain boundary 
such as AOB with a total energy of 6(x2/4x/~)~g. 
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than 60 ~ (by an amount depending on the volume- 
fraction [14] of the phases where different features 
arise to be dealt with later). The relationship 
between surface curvature and solubility holds for 
both positive (convex) and negative (concave) radii 
curvature. For a low volume-fraction of second 
phase it is clear from the foregoing considerations 
that, for discrete particles with concave surfaces 
at grain comers, for 70.5 ~ > 0 > 60 ~ as in Fig. 4, 
the particle with the larger dimensions has the 
lower solubility. Thus, for a number of such par- 
ticles, each at grain corners, the more usual particle 
coarsening phenomena would not occur. Instead, 
there would be a tendency for the particles of 
smaller dimensions to grow at the expense of the 
larger particles with a consequent overall equal- 
ization of particle size. This assessment is well 
founded but this situation is unlikely to occur to 
a significant extent in most practical circumstances, 
for, as well as satisfying the condition for the 
dihedral anne, 0, it is also required that a poly- 
crystalline material consists of  grains whose angles 
between grain edges are everywhere 109.5 ~ , and 
such grains rarely exist in practice. 

A new situation develops for 0 < 60 ~ that is, 
for 7g/~/i>x/~, since discrete particles with 
concave surfaces occupying grain comers are no 
longer geometrically feasible. In these circum- 
stances the particles then spread along the grain 
edges to form a complete interconnected network 

/ 
Figure 4 In this case the regular tetrahedron is modified 
in that its four faces are now concave. This negative 
curvature implies that the smaller particles of this geo- 
metrical form are more stable than the larger ones of a 
similar form. Hence, there is a tendency for such particles 
to reach a uniform size but this occurrence is unlikely in 
practice because, in real systems, grain edges do not every- 
where meet at 109.5 ~ . 

2130 

of second phase as rods of three-sided cross- 
section. When the dihedral angle is precisely 60 ~ , 
and the grain boundaries each meet at 120 ~ , the 
rods have plane surfaces and the cross-sections of 
the rods are then equilateral triangles except near 
grain comers where a double curvature exists near 
intersections. With 0 < 6 0  ~ the rod faces are 
concave, though now having an axis of curvature 
with each face being cylindrical rather than with 
the spherical curvature that is characteristic of the 
discrete particle distribution which formed under 
the conditions described earlier. This modifies the 
relationship between solubility and curvature to 
the form 

Se/S= = exp (~/iVm/RTc), (4) 

where Sc is now the solubility when the cylindrical 
faces have a radius of curvature e, e being positive 
for a convex surface and negative when the surface 
is concave. This leaves unaltered, however, the 
principle that the smaller the concave radius of 
curvature, the less is the solubility, thus indicating 
that the rods of second-phase at grain edges having 
a small area of cross,section are more stable than 
those of larger area. It again follows that solubility 
and diffusional processes will tend to favour an 
equalization of the sections of rods. This feature 
is clearly apparent to the extent that the second- 
phase tends to spread over all the grain edges thus 
tending towards the thinnest and most uniform 
cross-section. In the general case, the geometry is 
somewhat less simple because, with random three- 
dimensional grain distribution, the grain boundaries 
cannot everywhere meet at 120 ~ Such conditions 
are reserved for structures of a two-dimensional 
form where the structure in the third dimension 
is independent of distance. The possible practical 
implications of some geometrical forms in the 
latter case are suggested in Section 4. 

4. The stability of structures containing 
parallel rods 

Much attention has been given to the development 
of both metallic and non-metallic fibre composite 
materials [15] for high-strength applications com- 
bined with substantial toughness. There are many 
processes by which such fibre structures can be 
made and many possible systems have been con- 
sidered. Of particular interest is the two-dimensional 
eutectic growth of two-phase structures [3] because, 
here, both phases are established in chemical 
equilibrium and so one of the driving forces for 
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Figure 5 (a) and (b) iUustrate a possible form of a two-phase structure which has the characteristics of a fibre composite. 
The fibres run along the parallel long-grain edges and the cross-sections of the grains are approximately hexagonal. The 
fibre surfaces are three-sided and are concave. The essence of stability of the fibres lies in the condition that, with some 
solubility, thicker fibres are less stable than thinner ones and, hence, there is a tendency for all the fibres to become 
uniform and to resist any competitive growth or spheroidization. In this instance it is necessary to obtain a dihedral 
angle of less than 60 ~ and to meet this condition in a system where the phase comprising the rods has a high elastic 
modulus and yield and creep strength with the matrix phase of softer more ductile material in order to obtain the 
benefits of a stable material at high temperatures with good mechanical prolJerties overall. 

instability is immediately removed. They may 
further have low interfacial energies which assists 
their thermal stability and such structures have 
been proposed for elevated temperature appli- 
cations. Such structures, are of  course, only appro- 
priate to withstand stress in a direction along the 
fibre axes and in many situations an instability 
arises through processes analogous to particle 
coarsening where the fibres of  small (convex) 
radius, because of  their higher solubility, tend to 
be dissolved in favour of  the growth of  the neigh- 
bouring fibres of  greater radius. Other problems 
can also arise which relate to crystalline faults in 
the rods and to the instability of  rods in breaking 
up into droplets (Rayleigh instability). It is con- 
ceivable that these difficulties may be overcome 
by some of  the principles outlined above. 

It is feasible to form a composite fibre structure 
as in Fig. 5, where the fibres run along the parallel 
long-grain edges and where the grain cross-sections 
are approximately hexagonal. Here, the essence of  
fibre stability resides in the three-sided concave 
fibre surfaces where some solubility of  fibre in the 
matrix material serves to increase the uniformity 
o f  fibre cross-section because the thicker fibres 
are less stable than the thinner ones. 

In practice, the problem appears to be one of  
obtaining a dihedral angle, 0 < 60 ~ requiring a 
value of  7g > V~3'i, in a system where the phase 
comprising the rods has high elastic modulus and 
yield strength, with the matrix phase of  softer, 
more ductile, material. I n  systems matching the 

latter requirement, it appears more common for 
the phases to have a high interfacial energy per 
unit area, 7i, with insufficiently high values of  
3'g/7i. The wide diversity of  methods of  manu- 
facture of  fibre composite materials and the broad 
scope in the choice of  components may neverthe- 
less imply that suitable systems could be found 
with their stability as fibre composited based on 
the above principles. The possibility of  appropriate 
modification to the values of  3'i and 3'g by segre- 
gation should not be overlooked. 

5. Conclusions 
Interfacial effects in relation to second-phases with- 
in grains, on grain boundaries, edges and comers 
may have a profound influence on coarsening 
phenomena and on stability. Some of  these in- 
fluences may possibly be employed with advantage 
in the microstructural design of  alloys. 
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